9,893 research outputs found

    Deconvolution with Shapelets

    Full text link
    We seek to find a shapelet-based scheme for deconvolving galaxy images from the PSF which leads to unbiased shear measurements. Based on the analytic formulation of convolution in shapelet space, we construct a procedure to recover the unconvolved shapelet coefficients under the assumption that the PSF is perfectly known. Using specific simulations, we test this approach and compare it to other published approaches. We show that convolution in shapelet space leads to a shapelet model of order nmaxh=nmaxg+nmaxfn_{max}^h = n_{max}^g + n_{max}^f with nmaxfn_{max}^f and nmaxgn_{max}^g being the maximum orders of the intrinsic galaxy and the PSF models, respectively. Deconvolution is hence a transformation which maps a certain number of convolved coefficients onto a generally smaller number of deconvolved coefficients. By inferring the latter number from data, we construct the maximum-likelihood solution for this transformation and obtain unbiased shear estimates with a remarkable amount of noise reduction compared to established approaches. This finding is particularly valid for complicated PSF models and low S/NS/N images, which renders our approach suitable for typical weak-lensing conditions.Comment: 9 pages, 9 figures, submitted to A&

    Spin Exchange Rates in Electron-Hydrogen Collisions

    Get PDF
    The spin temperature of neutral hydrogen, which determines the 21 cm optical depth and brightness temperature, is set by the competition between radiative and collisional processes. In the high-redshift intergalactic medium, the dominant collisions are typically those between hydrogen atoms. However, collisions with electrons couple much more efficiently to the spin state of hydrogen than do collisions with other hydrogen atoms and thus become important once the ionized fraction exceeds ~1%. Here we compute the rate at which electron-hydrogen collisions change the hydrogen spin. Previous calculations included only S-wave scattering and ignored resonances near the n=2 threshold. We provide accurate results, including all partial wave terms through the F-wave, for the de-excitation rate at temperatures T_K < 15,000 K; beyond that point, excitation to n>=2 hydrogen levels becomes significant. Accurate electron-hydrogen collision rates at higher temperatures are not necessary, because collisional excitation in this regime inevitably produces Lyman-alpha photons, which in turn dominate spin exchange when T_K > 6200 K even in the absence of radiative sources. Our rates differ from previous calculations by several percent over the temperature range of interest. We also consider some simple astrophysical examples where our spin de-excitation rates are useful.Comment: submitted to MNRAS, 9 pages, 5 figure

    Red Supergiants in the Andromeda Galaxy (M31)

    Full text link
    Red supergiants are a short-lived stage in the evolution of moderately massive stars (10-25Mo), and as such their location in the H-R diagram provides an exacting test of stellar evolutionary models. Since massive star evolution is strongly affected by the amount of mass-loss a star suffers, and since the mass-loss rates depend upon metallicity, it is highly desirable to study the physical properties of these stars in galaxies of various metallicities. Here we identify a sample of red supergiants in M31 (the most metal-rich of the Local Group galaxies) and derive their physical properties by fitting MARCS atmosphere models to moderate resolution optical spectroscopy, and from V-K photometry.Comment: Accepted for publication in the Astrophysical Journa

    Test of nuclear level density inputs for Hauser-Feshbach model calculations

    Full text link
    The energy spectra of neutrons, protons, and alpha-particles have been measured from the d+59Co and 3He+58Fe reactions leading to the same compound nucleus, 61$Ni. The experimental cross sections have been compared to Hauser-Feshbach model calculations using different input level density models. None of them have been found to agree with experiment. It manifests the serious problem with available level density parameterizations especially those based on neutron resonance spacings and density of discrete levels. New level densities and corresponding Fermi-gas parameters have been obtained for reaction product nuclei such as 60Ni,60Co, and 57Fe

    MERLIN radio detection of an interaction zone within a binary Orion proplyd system

    Get PDF
    Presented here are high angular resolution MERLIN 5 GHz (6 cm) continuum observations of the binary proplyd system, LV 1 in the Orion nebula, which consists of proplyd 168--326SE and its binary proplyd companion 168--326NW (separation 0.4 arcsec). Accurate astrometric alignment allows a detailed comparison between these data and published HST PC Halpha and [Oiii] images. Thermal radio sources coincide with the two proplyds and originate in the ionized photoevaporating flows seen in the optical emission lines. Flow velocities of approx 50 km/s from the ionized proplyd surfaces and \geq 100 km/s from a possible micro-jet have been detected using the Manchester Echelle spectrometer. A third radio source is found to coincide with a region of extended, high excitation, optical line emission that lies between the binary proplyds 168--326SE/326NW . This is modelled as a bowshock due to the collision of the photoevaporating flows from the two proplyds. Both a thermal and a non-thermal origin for the radio emission in this collision zone are considered.Comment: 23 pages, 9 figures, accepted by Ap

    Understanding the effect of seams on the aerodynamics of an association football

    Get PDF
    The aerodynamic properties of an association football were measured using a wind tunnel arrangement. A third scale model of a generic football (with seams) was used in addition to a 'mini-football'. As the wind speed was increased, the drag coefficient decreased from 0.5 to 0.2, suggesting a transition from laminar to turbulent behaviour in the boundary layer. For spinning footballs, the Magnus effect was observed and it was found that reverse Magnus effects were possible at low Reynolds numbers. Measurements on spinning smooth spheres found that laminar behaviour led to a high drag coefficient for a large range of Reynolds numbers, and Magnus effects were inconsistent, but generally showed reverse Magnus behaviour at high Reynolds number and spin parameter. Trajectory simulations of free kicks demonstrated that a football that is struck in the centre will follow a near straight trajectory, dipping slightly before reaching the goal, whereas a football that is struck off centre will bend before reaching the goal, but will have a significantly longer flight time. The curving kick simulation was repeated for a smooth ball, which resulted in a longer flight time, due to increased drag, and the ball curving in the opposite direction, due to reverse Magnus effects. The presence of seams was found to encourage turbulent behaviour, resulting in reduced drag and more predictable Magnus behaviour for a conventional football, compared with a smooth ball. © IMechE 2005

    Imaging the Cosmic Matter Distribution using Gravitational Lensing of Pregalactic HI

    Full text link
    21-cm emission from neutral hydrogen during and before the epoch of cosmic reionisation is gravitationally lensed by material at all lower redshifts. Low-frequency radio observations of this emission can be used to reconstruct the projected mass distribution of foreground material, both light and dark. We compare the potential imaging capabilities of such 21-cm lensing with those of future galaxy lensing surveys. We use the Millennium Simulation to simulate large-area maps of the lensing convergence with the noise, resolution and redshift-weighting achievable with a variety of idealised observation programmes. We find that the signal-to-noise of 21-cm lens maps can far exceed that of any map made using galaxy lensing. If the irreducible noise limit can be reached with a sufficiently large radio telescope, the projected convergence map provides a high-fidelity image of the true matter distribution, allowing the dark matter halos of individual galaxies to be viewed directly, and giving a wealth of statistical and morphological information about the relative distributions of mass and light. For instrumental designs like that planned for the Square Kilometer Array (SKA), high-fidelity mass imaging may be possible near the resolution limit of the core array of the telescope.Comment: version accepted for publication in MNRAS (reduced-resolution figures

    Moduli Spaces of Lumps on Real Projective Space

    Get PDF
    Harmonic maps that minimize the Dirichlet energy in their homotopy classes are known as lumps. Lump solutions on real projective space are explicitly given by rational maps subject to a certain symmetry requirement. This has consequences for the behaviour of lumps and their symmetries. An interesting feature is that the moduli space of charge three lumps is a D2-symmetric 7-dimensional manifold of cohomogeneity one. In this paper, we discuss the charge three moduli spaces of lumps from two perspectives: discrete symmetries of lumps and the Riemann-Hurwitz formula. We then calculate the metric and find explicit formula for various geometric quantities. We also discuss the implications for lump decay
    corecore